
The

INSTITUTION

periodical Newsletter
December 29, 2023

https://peteysoft.github.io

Table of contents

Directions and recap 2
Editorial

Linear maps for modelling tracer transport: a mathematical overview 4
Presentation

Solving for multi-class: a survey and synthesis 7
Poster

Boolean Algebra in a Nutshell 11
Article

1

Directions and recap

When I look back, it feels like I’ve been spending
most of my time in bed, but when I actually take
stock of my achievements, the last few years have
been very productive. I published three papers
in peer-reviewed journals along with two in-depth
summary papers on the arXiv preprint database.
This is in addition to two conference presenta-
tions, thousands of lines of computer code, includ-
ing several new scientific software packages, and
innumerable popular science articles on social me-
dia.

Research proceeded on two fronts: machine
learning, mainly statistical classification, follow-
ing on my work using it for remote sensing re-
trievals, and tracer transport, especially the prin-
cipal component proxy tracer dynamical interpo-
lation technique. Much of this was simply clean-
ing up existing work and tying up loose ends.

I like to think that my summary of multi-class
classification, entitled, “Solving for multi-class: a
survey and synthesis” (arXiv: 1809.05929) is both
the first and last word on the matter. Along
with the article, there is also software that imple-
ments the ideas in the paper (https://github.
com/peteysoft/libmsci). This article has col-
lected six citations already. This newsletter con-
tains a summary as it was presented to the Ma-
chine Learning and Artificial Intelligence Ottawa
meetup group on June 25, 2019.

Next, I have finally published my work on dy-
namical tracer interpolation in the peer-reviewed
literature (Environmental Fluid Mechanics 18

(6): 1533). To help get there, I compiled a lengthy
summary of mathematical techniques related to
modelling tracer transport using matrices and lin-
ear algebra, entitled, “Matrix Analysis of Tracer
Transport” (arXiv: 1506:06984). A summary of
this latter work is also contained in this newslet-
ter. It was originally presented to the 2019 Inter-
national conference on Water, Informatics, Sus-
tainability and the Envirionment (iWISE) at Car-
leton University. Applications include monitoring
ozone and other long-lived atmospheric tracers, as
well as deriving sources and sinks for these tracers.

Maps of carbon dioxide sources and sinks would
be of particular interest in today’s, increasingly
industrialized world.

The focus of new work has taken a different
direction. First, I have started compiling a work
that generalizes the tracer transport equations to
classical systems modelled as evolving probabil-
ity distributions. This has applications in non-
equilibrium statistical mechanics and the under-
standing of entropy.

Second, I’ve become interested in the differ-
ence between segregated cycle lanes and the road.
This is very much in line with the whole spirit
of my work. It’s gratifying to research something
highly theoretical and abstract. One feels inside
of a rarified atmosphere, exploring the corners of
some Platonic realm. And of course we can’t for-
get the prestige often associated with such work.

But it is the more mundane aspects of our
world that often need the most attention, as too
many researchers fail to apply sufficient rigour to
everyday problems. Often, problems in the social
sciences are considerably more difficult than those
in the “hard” sciences because they are so com-
plex. The problems with segregated bicycle lanes,
for instance, have been understood for decades,
and can be illustrated by simple diagrams like this
one:

2

Yet many modern traffic engineers insist that
this is the only means of making cycling a safe and
viable tranportation means for everyone. How
can we resolve the dispute between so-called “ve-
hicular cyclists” and those advocating for Dutch-
style segregated lanes? There is plenty of work, of
course, on the safety of cycle lanes relative to the
road. Most of this, however, compares them as
a statistical aggregate, with little attempt at re-
moving or understanding confounding factors. We
can compare the safety of cyclists in the U.S. ver-
sus the Netherlands, for instance, and infer that
the larger number and type of cycle lanes in the
Netherlands results in their superior safety record.
There are many other differences between the U.S.
and the Netherlands other than simply “cycling
infrastrucutre”, however. Most who have trav-
elled to Europe likely noted the superiority of Eu-
ropean drivers over their American counterparts.
What if this is the actual reason for the differ-
ence in cyclist accident rates? Certainly it could
be a confounding factor, along with many other
possible ones.

My interest is in comparing the roads and cy-
cle lanes directly, while controlling (ideally) for
cyclist skill and power. My preliminary work in-

volved simply riding the bike lane, then the road,
and then comparing them on the basis of four fac-
tors: length, speed, surface quality, and number
of traffic conflicts. The latter would be defined
as any time I must take evasive action to avoid a
collision.

Since I’ve ridden these lanes and know what
they’re like, I suspect I already know the results.
In my initial trials (three comparisons, so far),
I’ve found the lanes to be worse in every way than
the road: longer, slower, rougher, and with more
traffic conflicts. This seems less about science,
however, than polemics. It has been found that
cyclists in bike lanes tend to ride more slowly than
those on the road. Stopping distance is propor-
tional to the square of the speed, thereby directly
affecting safety. So at the very least, we need to
get a handle on how speed affects the outcome.
Another important variable is rider experience, as
noted above.

My new plan, therefore, is to ride each lane
multiple times while maintaining (in as much as
possible) a constant power output. Outputs of 50,
100, 150, and (if I can manage it) 200 Watts could
be tried. Not only would this help understand
how speed affects the results, but also get a direct
measure of the efficiency of each route as a mea-
sure of distance per unit energy. A potentially less
obvious benefit would be mitigating any implicit
bias by the rider (me). A better experimental de-
sign would be randomized and double blind, but
I can certainly gather some preliminary results.
The real measure of success in the experimental
sciences is replicability, not necessarily rigour.

If you are interested in contributing to any of
these projects, whether money, time, or resources,
please drop me a line at peteymills@hotmail.com.
Power meters are expensive, and newer versions
require an expensive portable phone to make them
work, so this would be a welcome donation. Also,
if you are free to ride and record your own com-
parison of road versus bike lane (especially segre-
gated), that would be an excellent contribution.

Peter Mills

3

Linear maps for modelling tracer transport

a mathematical overview

International Conference on Water, Informatics, Sustainabiliy, and Environment (iWISE)
Carleton University, Ottawa, August 9, 2019.

Basic Idea

Advection-diffusion equation:

∂q

∂t
= [−~v · ∇+∇ ·D · ∇] q

where:

• q = q(~x, t) is the tracer concentration

• t is time

• ~v =~(~x, t) is velocity

• ~x is spatial position

• d is the diffusion coefficient

Represent bracketed section as a linear map:

∂q

∂t
= A · q (1)

Linear maps

Properties of linearity:

A · (cq) = c(A · q)

A · (q + p) = A · q +A · p

where c is a scalar constant.

Function map (theoretical):

A(~x, ~x′) · q(~x′) =

∫

A(~x, ~x′)q(~x′)d~x′

Matrix(actual):

A · ~q =







∑

j

aijqj







(Analysis is often identical.)

Solution

∂R(t0,∆t)

∂(∆t)
= A(t0 +∆t) ·R(t0,∆t) (2)

R(t0, 0) = I

Where:

4

• R = R(~x, ~x0, t0,∆t) is a linear map

• I is the identity map: I · q = q

• tn = t0 +
∑n

i=1 ∆ti

There are two parameters for time so that R

may be decomposed in terms of itself:

R(t0, tn − t0) =

R(tn−1,∆tn) ·R(tn−2,∆tn−1) · . . .

·R(t2,∆t3) ·R(t1,∆t2) ·R(t0,∆t1)

The final tracer field is determined by multi-
plying R with the initial tracer field:

q = R(t0, t− t0) · q0

R approaches a steady-state solution as the
time-step becomes small:

lim
∆t→0

{R(t,∆t) = exp [∆tA(t)]}

Eigenvalue decomposition:

A(t) = V · Λ · V −1

lim
∆t→0

{R(t,∆t) = V −1 · exp [∆tΛ] · V
}

Where exp is the vector generalization of the ex-
ponential function.

Operators to linear maps

Consider the identity operator:

q(~x) =

∫

δ(~x− ~x′)q(~x′)d~x′

Take the derivative:

∇~xq =

∫

∇~xδ(~x− ~x′)d~x′

∂q

∂xi

=

∫

δ′(xi − x′
i)
∏

j 6=i

δ(xj − x′
j)q(x

′
i)d~x

Where:

• δ(~x) is the vector generalization of the Dirac
delta function:

δ(~x) =
∏

i

δ(xi)

• δ′ is the generalized derivative of the Dirac
delta function:

∫

δ′(x− x′)q(x′)dx′ = q(x′)

Adding sources and sinks

q(tn) ≈ [. . . [[[q0 · q0 ·R(t0,∆t) + σ(t1)] ·

R(t1,∆t) + σ(t2)] ·

R(t2,∆t) + σ(t3)] · . . .]

= R(t0, tn − t0) · q0 +
n
∑

i=1

R(ti, tn − ti) · σ(ti) (3)

Where σ is the integrated source term.

Applications

Genesis

• Studied noisy chaos for undergrad. thesis.

• Represent classical systems as probability
distributions (mathematics is equivalent).

• Principal component proxy tracer dynami-
cal tracer interpolation method.

• Reviewers were interested in error analysis
and parameter selection.

(preprint: Peter Mills (2014) “Matrix Analysis
of Tracer Transport” arXiv: 1506.06984)

PC proxy

Decompose R using SVD:

R(t0,∆t) = U · S · V T

Where:

• U is an orthogonal matrix of left singular
vectors

• S is a diagonal matrix of singular values

• V is an orthogonal matrix of right singular
vectors

5

Keep k largest singular values and correlate
singular vectors with measurements:

min
~c

∑

i







k
∑

j=1

cj ~wiR(t0, t
(i) − t0)~v

(j) −mi







2

Peter Mills (2018 “PC proxy: a method for
dynamical tracer interpolation.” Environmental
Fluid Mechanics 18 (6): 1533-1558. Springer.

Retrieving sources and sinks

Retro-plumes Adjoint equation:

∂R−1(t0,∆t)

∂(∆t)
= R−1(t0,∆t) ·A(t0 +∆t)

(Equation (2) with RHS transposed and negated.)
Where R−1 is the inverse mapping. Map detector
directly onto sources: q0 = R−1 · q

Numerical inversion Recalling Equation (3),
discretized and interpolated:

C · ~σ = ~µ

Where:

• C is a matrix of coefficients

• ~σ are the sources

• ~µ are the measurements

Likely not well posed: will need to be constrained
and regularized.

Papers that employ some or most of

these ideas

• Houweling, S. et al. (1999) “Inverse mod-
elling of methane sources and sinks using
the adjoint of a global transport model.” J.
of Geophysical Research 104 (D21): 26137.

• Issartel, J.-P. (2003) “Rebuilding sources of
linear tracers after atmospheric concentra-
tion measurements.” Atmospheric Chem-
istry and Physics 3 (6): 2125.

• Bocquet, M. (2005) “Reconstruction of an
atmospheric tracer source using the prin-
ciple of maximum entropy. I: Theory.”
QJRMS 121 (610): 2191.

• Lin, J.C. et al. (2003) “A near field tool for
simulating the upstream influence of atmo-
spheric observations: The STILT model.”
J. of Geophysical Research 108 (D16): 4493.

Software

• Ctraj: semi-Lagrangian tracer simulation
that outputs sparse matrices

• sparse calc: interactive calculator for sparse
matrices

https://github.com/peteysoft/libmsci

Thanks!

Thanks to W.A. Eldin for inviting me...

6

Solving for multi-class A survey and synthesis

Peter Mills

Webpage: https://peteysoft.github.io

Software: https://github.com/peteysoft/libmsci

Email: peteymills@hotmail.com

This paper was presented as a poster to the Machine Learning and Artificial Intelligence Ottawa
Meetup group on Wednesday June 26, 2019 at 7 Bayview Rd. It gives a short summary of different
methods of generalizing binary classifiers to multi-class and describes a unifying framework for repre-
senting them. The idea is to construct customized solutions for different problems. The only problem
that seemed to benefit from a customized solution, however, was a remote sensing dataset in which the
classes were discretized continuum values.

It remains to be seen whether using statistical classification in this way for non-linear regression is
competitive with a neural network, for instance. To this end, I have designed a “lightweight” neural net-
work library. Sitting at roughly 6000 lines of code, it piggy-backs upon the GNU Scientific Library (GSL)
for the optimization methods. The plan is to use the same neural network for statistical classifications
as for nonlinear regression.

Abstract

Many of the best statistical classification algorithms
are binary classifiers that can only distinguish be-
tween one of two classes. The number of possible ways
of generalizing binary classification to multi-class in-
creases exponentially with the number of classes.
There is some indication that the best method will de-
pend on the dataset. Therefore we are particularly in-
terested in data-driven solution design, whether based
on prior considerations or on empirical examination of
the data. Here we demonstrate how a recursive con-
trol language can be used to describe a multitude of
different partitioning strategies in multi-class classifi-
cation, including those in most common use. We use
it both to manually construct new partitioning con-
figurations as well as to examine those that have been
automatically designed.

Eight different strategies were tested on eight dif-
ferent datasets using a support vector machine (SVM)
as the base binary classifier. Numerical results sug-
gest that a one-size-fits-all solution consisting of one-
versus-one is appropriate for most datasets. Three
datasets showed better accuracy using different meth-
ods. The best solution for the most improved dataset
exploited a property of the data to produce an un-
certainty coefficient 36% higher (0.016 absolute gain)
than one-vs.-one. For the same dataset, an adaptive
solution that empirically examined the data was also

more accurate than one-vs.-one while being faster.

Full paper: https://arxiv.org/abs/1809.

05929

Outline of the problem

Many of the best statistical classifiers are binary
classifiers, that is they can only distinguish be-
tween two different classes, e.g.:

• linear perceptrons

• logistic regression (Michie et al., 1994)

• support vector machines (SVM) (Müller
et al., 2001)

• piecewise linear classiifers (Mills, 2018)

Two problems:

1. How do we partition the class labels so as
to train the binary classifiers?

2. Given the estimated conditional probabili-
ties of the binary classifiers:

{Pi(c|~x)}

we want to find the conditional probabilities
of the multi-class problem:

P (j|~x), j = [1..nc]

7

Why use probabilities?

1. Provide useful extra information: quantify
the accuracy of an estimate.

2. Relation between binary and multi-class
probabilities is unique and derives rigor-
ously from probability theory.

3. Binary classifiers that return a continuous
decision function can be recalibrated to an
approximate probability.

Error correcting codes

Use a coding matrix, A, to relate binary class
probabilities to multi-class probabilities: (Diet-
terich and Bakiri, 1995)

ri =

∑

j aijpj
∑

j |aijpj

• ri = Pi(+1|~x)− Pi(−1|~x)

• pj = P (j|~x)

Rearrange to form linear system:

Q~p = ~r

qij = (1− |aij |) ri

• Q reduces to A if A contains no zeros.

• A is transposed relative to normal conven-
tion: more natural when dealing with prob-
abilities.

• All the above equations derive rigorously
from probability theory.

Example coding matrix, one-vs.-one:

A =

















−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1

















Decision trees

Hierarchically subdivide the classes (Lee and
Oh, 2003), such as in this hypothetical surface-
classification probelm:

Only winning probability is returned as the
product of all the probabilities returned at each
level.

Empirical decision trees

• Use inter-class distance to build dendrogram
(Benabdeslem and Bennani, 2006).

• Hausdorff distance (Ott, 1993):

DHij =

max {mink |~xk − ~xl|,minl |~xk − ~xl|;

yk = i; yl = j}

8

Unifying framework

Recursive control language:

 ::= <mod> “{” <br-list> “}” |

<CLS>
<mod> ::= <BIN> | <part-list>
<br-list> ::=
 | <br-list>

<part-list> ::= <part> | <part-list> <part>
<part> ::= <BIN> <cls-list> “ / ”

<cls-list> “;”
<cls-list> ::= <cls-list> <CLS> |

<CLS>

.

• <CLS> is a class value between 0 and nc−1.

• <BIN> is a binary classifier.

Example, one-vs.-one:

model01 0 / 1;

model02 0 / 2;

model03 0 / 3;

model12 1 / 2;

model13 1 / 3;

model23 2 / 3;

{0 1 2 3}

Example, the figure above:

TreeVsField {

EvergreenVsDeciduous {0 1}

CornVsWheat {2 3}

}

The two methods, error-correcting-codes and
decision trees, can be combined. This is actually
used in Zhou et al. (2019).

Numerical trials

Six configurations:

• 1-vs.-the-rest

• 1-vs.-1

• Orthogonal coding matrix (Mills, 2019)

• “Adjacent” partitioning∗

• Arbitrary tree

• Empirically-designed tree

* Adjacent partitioning for seven classes:

shuttle_adj-00 0 / 1 2 3 4 5 6;

shuttle_adj-00 0 1 / 2 3 4 5 6;

shuttle_adj-00 0 1 2 / 3 4 5 6;

shuttle_adj-00 0 1 2 3 / 4 5 6;

shuttle_adj-00 0 1 2 3 4 / 5 6;

shuttle_adj-00 0 1 2 3 4 5 / 6;

{0 1 2 3 4 5 6}

Example of empirically-designed tree for sat

dataset:

sat_emp {

sat_emp.00 {

sat_emp.00.00 {

sat_emp.00.00.00 {

sat_emp.00.00.00.00 {

VERY DAMP GREY SOIL

DAMP GREY SOIL

}

RED SOIL

}

GREY SOIL

}

STUBBLE

}

COTTON CROP

}

9

Results

Uncertainty coefficient (Mills, 2018):
config. method letter pendigits usps segment

1 vs. 1 inv. 0.940± 0.002 0.986± 0.003 0.931± 0.009 0.922± 0.010
1 vs. rest lsq. 0.932± 0.003 0.982± 0.004 0.928± 0.007 0.921± 0.010
ortho. iter. 0.922± 0.003∗ 0.982± 0.003 0.927± 0.008 0.923± 0.010

adj. lsq. 0.886± 0.005 0.971± 0.004 0.906± 0.008 0.913± 0.010
hier rec. 0.880± 0.004 0.972± 0.004 0.910± 0.007 0.909± 0.008

lsq. 0.888± 0.004 0.973± 0.004 0.912± 0.007 0.909± 0.008
emp. rec. 0.905± 0.003 0.979± 0.003 0.917± 0.008 0.903± 0.006

lsq. 0.910± 0.003 0.979± 0.004 0.920± 0.010 0.909± 0.007

∗ A random coding matrix was used since building an orthogonal matrix would take too long using current
methods.

config. method sat urban shuttle humidity

1 vs. 1 inv. 0.800± 0.010 0.729± 0.030 0.982± 0.003 0.432± 0.006
1 vs. rest lsq. 0.799± 0.009 0.728± 0.030 0.979± 0.003 0.359± 0.007
ortho. iter. 0.798± 0.010 0.730± 0.030 0.974± 0.002 0.403± 0.009
adj. lsq. 0.792± 0.010 0.735± 0.030 0.970± 0.002 0.448± 0.006

hier rec. 0.788± 0.010 0.724± 0.030 0.974± 0.003 0.435± 0.006
lsq. 0.789± 0.010 0.727± 0.030 0.973± 0.002 0.433± 0.007

emp. rec. 0.790± 0.009 0.702± 0.050 0.977± 0.004 0.440± 0.008
lsq. 0.795± 0.010 0.714± 0.040 0.975± 0.003 0.437± 0.008

Brier score (Jolliffe and Stephenson, 2003):
config. letter pendigits usps segment

1 vs. 1 0.0480± 0.0008 0.032± 0.002 0.066± 0.003 0.090± 0.005
1 vs. rest 0.0519± 0.0007 0.035± 0.002 0.070± 0.003 0.092± 0.004
ortho. 0.0587± 0.0006∗ 0.037± 0.002 0.070± 0.003 0.090± 0.006

adj. 0.063± 0.001 0.042± 0.002 0.077± 0.003 0.093± 0.007
hier. 0.062± 0.001 0.040± 0.002 0.075± 0.003 0.095± 0.005
emp. 0.0553± 0.0008 0.035± 0.003 0.071± 0.004 0.094± 0.003

config. sat urban shuttle humidity

1 vs. 1 0.145± 0.004 0.170± 0.006 0.018± 0.001 0.259± 0.001

1 vs. rest 0.149± 0.003 0.171± 0.007 0.012± 0.001 0.2750± 0.0009
ortho. 0.149± 0.003 0.172± 0.005 0.022± 0.001 0.268± 0.002
adj. 0.152± 0.004 0.167± 0.008 0.0248± 0.0007 0.264± 0.002
hier. 0.150± 0.004 0.167± 0.007 0.023± 0.001 0.259± 0.001
emp. 0.149± 0.004 0.173± 0.008 0.022± 0.001 0.261± 0.002

Conclusions

• One-size-fits-all method adequate for most
datasets.

• One-vs.-one most accurate.

• Decision tree fastest (see full paper) (Mills,
2018).

• Some datasets benefit from a customized ap-

proach.

• Because the humidity dataset is a dis-
cretized continuum problem there is an or-
dering to the classes, hence “adjacent” par-
titioning works best.

• Recursvie control language can help find
best configuration.

10

References

Benabdeslem, K. and Bennani, Y. (2006).
Dendrogram-based SVM for Multi-Class Clas-
sification. Journal of Computing and Information

Technology, 14(4):283–289.

Dietterich, T. G. and Bakiri, G. (1995). Solving Multi-
class Learning Problems via Error-Correcting Out-
put Codes. Journal of Artificial Intelligence Re-

search, 2:263–286.

Jolliffe, I. T. and Stephenson, D. B. (2003). Fore-

cast Verification: A Practitioner’s Guide in Atmo-

spheric Science. Wiley.

Lee, J.-S. and Oh, I.-S. (2003). Binary Classification
Trees for Multi-class Classification Problems. In
Proceedings of the Seventh International Confer-

ence on Document Analysis and Recognition, vol-
ume 2, pages 770–774. IEEE Computer Society.

Michie, D., Spiegelhalter, D. J., and Tayler, C. C., edi-
tors (1994). Machine Learning, Neural and Statisti-

cal Classification. Ellis Horwood Series in Artificial

Intelligence. Prentice Hall, Upper Saddle River, NJ.
Available online at: http://www.amsta.leeds.ac.
uk/~charles/statlog/.

Mills, P. (2018). Accelerating kernel classifiers
through borders mapping. Real-Time Image Pro-

cessing. doi:10.1007/s11554-018-0769-9.

Mills, P. (2019). Solving for multiclass using or-
thogonal coding matrices. SN Applied Sciences,
1(11):1451.

Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and
Schölkopf, B. (2001). An introduction to kernel-
based learning algorithms. IEEE Transactions on

Neural Networks, 12(2):181–201.

Ott, E. (1993). Chaos in Dynamical Systems. Cam-
bridge University Press.

Zhou, J. T., Tsang, I. W., Ho, S.-S., and Mueller, K.-
R. (2019). N-ary decomposition for multi-class clas-
sification. Machine Learning. doi:10.1007/s10994-
019-05786-2.

Boolean Algebra in a Nutshell

This article was originally published on Medium on May 29, 2018.
https: // medium. com/ @peteymills/ boolean-algebra-in-a-nutshell-accab8430266

Introduction

Table 1: List of operators used in Boolean alge-
bra. All operators return a new binary proposi-
tion.

Name Symbol Example

AND ∧ X ∧ Y

OR ∨ X ∨ Y

NOT ¬ ¬X
if-then → X → Y

if-and-only-if ⇐⇒ X ⇐⇒ Y

exclusive OR ⊕ X ⊕ Y

(XOR)

The usual approach to teaching logic is to start
with Aristotelian logic. In today’s digital world, I
think a more natural starting point for the topic
is Boolean algebra. Not only does it flow more
naturally into more modern logics such as propo-

sitional and first-order logic, it is also invaluable
to both the computer programmer and computer
engineer.

Let P be a proposition, for instance, “Roses
are red,” “The sky is blue,” or “All dogs are mam-
mals.” As such, P will take on a truth value.
In Boolean logic, it may take on only one of two
values: that is, it is either true or false, 0 or 1;
P ∈ {0, 1}.

The purpose of Boolean algebra is to form con-
junctive expressions with one or more of these
propositions. On the basis of the truth values of
the individual propositions, the truth of the entire
expression may be evaluated.

Two of the most common conjunctions used in
English to unite two or more statements (propo-
sitions) are AND and OR, for instance:

Roses are red AND the sky is blue.

11

These conjunctions are also used in Boolean logic
as operators between two propositions, although
OR is somewhat different than how it is used in
English.

The two symbols for AND and OR are ∧ and
∨, respectively. Suppose we have two proposi-
tions, P and Q. We can use these operators
to unite them, thereby turning them into a new
proposition:

P ∧Q

which is read, “P AND Q”. Another useful op-
erator is the NOT or negation operator, ¬. This
is a unary rather than a binary operator, hence
operates on only one argument:

¬P

An interesting feature of Boolean logic, is that
unlike in older forms of logic, such as Aristotelian
logic, the entire content of an elementary proposi-
tion, such as P , above, is abstracted away, leaving
only the binary truth value.

Truth tables

Table 2: Table of gates and equivalent Boolean ex-

pressions.

Name Gate Expression

AND X ∧ Y

OR X ∨ Y

NOT ¬X

NAND ¬(X ∧ Y)

NOR ¬(X ∨ Y)

XOR X ⊕ Y

As mentioned in the previous section, combin-
ing one or more propositions with an operator cre-
ates a new proposition. How do we determine the
truth value of this new proposition? One way is
using a truth table. A truth table tabulates the
truth value of the whole expression for every pos-
sible truth value of each of the consituent propo-
sitions.

12

Here is the truth table for the AND operator:
X Y X ∧ Y

0 0 0
0 1 0
1 0 0
1 1 1

Note that the logical OR is different from the
English “or”. In English speech, “or” is the equiv-
alent to the exclusive OR (XOR) which will be
discussed in next section.

X Y X ∨ Y

0 0 0
0 1 1
1 0 1
1 1 1

NOT is logical negation:
X ¬X
1 0
0 1

Gates and logic circuits

Figure 1: Binary adder

Any Boolean expression can be written as a
logical circuit network using gates. Table 1 lists
the gates and their equivalent Boolean operations.

Consider the following pair of expressions:

(A ∧B ∧ Cin) ∨ {(A ∨B ∨ Cin)∧

¬ [(A ∧B) ∨ (B ∧ Cin) ∨ (A ∧ Cin)]}

(A ∧B) ∨ (B ∧ Cin) ∨ (A ∧ Cin)

This is a binary adder and the equivalent logic cir-
cuit is shown in Figure 1. The first expression is
the sum (S) and the second is the carry bit (Cout).
Note how the circuit allows repeated expressions
to be re-used without needing multiple versions.

A set of adders lined up in series with each
“carry out” bit (Cout) routed to the next “carry
in” bit (Cin) can be used to add multiple digit
binary numbers.

Tautologies and logical implication

A tautology is an expression that is always true.
Consider for instance:

P ∨ ¬P

Now, consider these two new operators: log-
ical implication or if-then (→) and if-and-only-if
(⇐⇒).

If X then Y (X → Y) is defined:
X Y X → Y

0 0 1
0 1 1
1 0 0
1 1 1

This is equivalent to ¬X ∨ Y .
To define if-and-only-if, we first define the ex-

clusive OR or XOR which is as follows:
X Y X ⊕ Y

0 0 0
0 1 1
1 0 1
1 1 0

If-and-only-if, ⇐⇒ , is simply a negated XOR
(¬(X ⊕ Y)).

Now consider two equivalent expressions, for
instance X → Y and ¬X ∨ Y , above. We can
write:

(X → Y) ⇐⇒ (¬X ∨ Y)

13

This expression is a tautology. It also encapsu-
lates a rule-of-inference, that is you can substi-
tute the expression on the left for the one on the
right and vice versa.

For the one way case, where you can substitute
the expresson on the left for the one on the right,
but not the other way around, we use if-then. For
example:

(X ⇐⇒ Y) → (X → Y)

Boolean logic and computational

complexity

Boolean algebra is important in computational
complexity theory. Satisfying a Boolean expres-
sion is a prototypical NP-complete problem. The
worst-case running time to find a set of inputs
that returns a value of 1 increases exponentially
with the number of inputs. Moreover, other NP
problems are equivalent to this problem and all
such equivalent problems are “NP-complete”.

Note, however, that NP does not mean
“non-polynomial”, but rather, “non-deterministic
polynomial”. In other words, an NP prob-
lem will always run in polynomial time on a
non-deterministic computer. A non-deterministic
computer is a theoretical construct such that ev-
ery time it encounters a branch, the computer
takes both simultaneously, so it has the property
of always finding the optimal path in any given
algorithm.

The most discussed NP-complete problem is
the travelling salesmen problem, which is as fol-
lows: given a set of points, what is the shortest
path that passes through all of them? Note that
in this context, it must be formulated as a deci-
sion problem: that is, given a set of points and a
distance threshold, find a path that is less than
the threshold. Presumably, one could design a
network that would accurately model any given
travelling salesment problem.

While any potential solution can be verified
in polynomial time–the running time is propor-
tional to the size of the network–finding a solu-
tion can currently only be acheived in NP time–

the worst-case running time is proportional the
exponent of the size. It is currently an unsolved
problem whether algorithms exist that can find a
solution to NP-complete problems in strict poly-
nomial time.

Exercises

1. (a) Derive the truth table for NOR and
NAND.

(b) Write all the gates and operators in
terms of NOT and NOR.

(c) Write all the gates and operators in
terms of NOT and NAND.

2. (a) Derive the truth table for the binary
adder. Hint: here I’ve started it off for
you,

A B Cin S Cout

0 0 0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(b) See if you can come up with your own
formulation for the adder. In partic-
ular, try to minimize the number of
gates. The example uses a total of nine
(9) gates. Can you invent one that uses
fewer?

3. Prove the following tautologies (hint: once
you have proven one tautology, you can use
it to help prove the others):

(a) ¬(A ∧B) ⇐⇒ (¬A ∨ ¬B)

(b) ¬(A ∨B) ⇐⇒ (¬A ∧ ¬B)

(c) [A ∧ (B ∨ C)] ⇐⇒ [(A ∧B) ∨ (A ∧ C)]

(d) [A ∨ (B ∧ C)] ⇐⇒ [(A ∨B) ∧ (A ∨ C)]

(e) [(A → B) ∧ (B → A)] ⇐⇒ (A ⇐⇒
B)

14

